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ABSTRACT: Ischemia-reperfusion injury (IRI), which describes the cell damage and death that occurs after blood and oxygen are
restored to ischemic or hypoxic tissue, is a significant factor within the mortality rates of heart disease and stroke patients. At the
cellular level, the return of oxygen triggers an increase in reactive oxygen species (ROS) and mitochondrial calcium (mCa2+)
overload, which both contribute to cell death. Despite the widespread occurrence of IRI in different pathological conditions, there
are currently no clinically approved therapeutic agents for its management. In this Perspective, we will briefly discuss the current
therapeutic options for IRI and then describe in great detail the potential role and arising applications of metal-containing
coordination and organometallic complexes for treating this condition. This Perspective categorizes these metal compounds based
on their mechanisms of action, which include their use as delivery agents for gasotransmitters, inhibitors of mCa2+ uptake, and
catalysts for the decomposition of ROS. Lastly, the challenges and opportunities for inorganic chemistry approaches to manage IRI
are discussed.

1. INTRODUCTION
Researchers have leveraged the unique features of metal ions to
develop metal-based small molecules for various applications
within biology, marking an important research area within
bioinorganic chemistry. In particular, the use of metal
complexes with either therapeutic or diagnostic properties
has led to the field of metals in medicine. Perhaps the most
influential metal-based drug is the simple Werner coordination
complex cis-[Pt(NH3)2Cl2] known as cisplatin. This com-
pound is a highly effective anticancer drug that is used
clinically for several different cancer types, including ovarian
and testicular.1 The success of cisplatin subsequently led to the
investigation and worldwide clinical approval of two other
platinum-based drugs oxaliplatin2 and carboplatin.3 Mechanis-
tically, these platinum-based drugs induce their anticancer
properties through the formation of covalent DNA adducts,
which inhibit transcription in cancer cells.4 The success of
these compounds has motivated significant efforts to develop
new metal complexes as cytotoxic anticancer drugs with an
emphasis on tuning their abilities to bind to DNA.5−7 In fact,
one could argue that the field of metals in medicine is
dominated by such cytotoxic metal complexes with secondary
aspects of research within the development of diagnostic
agents like gadolinium-based magnetic resonance imaging
(MRI) contrast agents.8 An alternative role for metal
complexes, however, is one that provides protective effects to
cells, an approach that can lead to therapeutic agents for
conditions like stroke and heart disease. The use of metal
complexes as cytoprotective agents has only been scarcely
explored with most efforts directed toward the development of
superoxide dismutase (SOD) mimics for removing deleterious
reactive oxygen species (ROS).9−12 In this Perspective, we
discuss the pathophysiological condition known as ischemia-

reperfusion injury (IRI) for which metal complexes can play an
important therapeutic role.
IRI describes the irreparable cell death and tissue damage

that is caused by the rapid reoxygenation and restoration of
blood flow to hypoxic and ischemic organs (Figure 1). This
process occurs after the medical intervention of stroke and
heart failure, as well as in transplanted organs.13 Although
restoration of oxygen and blood is essential for immediate
treatment, it also triggers the damaging effects of IRI that can
negatively affect the success rates of these procedures and long-
term patient survival. Thus far, there are no clinically approved
drugs for the prevention or minimization of IRI. Consequently,
IRI has been referred to as a “neglected therapeutic target,”14 a
concerning designation given its implication in heart failure
and stroke, two of the leading causes of death in the United
States.15

To develop therapeutic agents for this condition, an
understanding of the cellular pathways that trigger its
pathology are needed (Figure 1). When cells are deprived of
oxygen, they switch their metabolic pathways from O2-
dependent oxidative phosphorylation in the mitochondria to
anaerobic glycolysis in the cytosol.13 This change has two key
implications on the intracellular environment. First, the
mitochondrial membrane potential (MMP) is depolarized
due to the lack of the transmembrane H+ gradient that would
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normally be generated by oxidative phosphorylation. Second,
the production of lactic acid by anaerobic glycolysis leads to an
excess of H+ ions in the cytosol, which are swapped for Ca2+
ions via the sequential operation of the Na+/H+ and Na+/Ca2+
exchanger proteins.16 When reperfusion occurs, blood flow is
restored, and oxygen is returned to cells. With oxygen levels
suddenly elevated, the formation of ROS occurs, and the cell
switches back to oxidative phosphorylation as its primary
metabolic pathway, reestablishing the MMP.17 Consequently,
the return of the MMP provides a strong driving force for the
cytosolic Ca2+ ions to enter the mitochondria via a transporter
known as the mitochondrial calcium uniporter (MCU),
triggering the phenomenon of mitochondrial Ca2+ (mCa2+)
overload and subsequent opening of the mitochondrial
permeability transition pore (mPTP) that leads to cell death.18

These cellular events that precede and trigger IRI provide
opportunities and therapeutic targets to address this condition.
The most commonly investigated drug candidate for IRI is the
organic natural product cyclosporin A, which inhibits the
opening of the mPTP.19 Despite preclinical success with this
compound, it has not advanced to clinical approval, due to its
variable efficacies in trials20 as well as side effects like
neurotoxicity and chronic nephrotoxicity.21 Thus, alternative
drugs are needed, ideally ones that target different parts of the
IRI pathway. In this Perspective, we will examine recent efforts
to use the novel properties of metal-containing small molecules
to develop therapeutic agents for IRI. To date, three main
approaches have been investigated to leverage the unique
properties of metal complexes. First, researchers have used
coordination and organometallic complexes to deliver the
gasotransmitters carbon monoxide (CO), nitric oxide (NO),
and hydrogen sulfide (H2S), which are known to elicit
cytoprotective effects at low concentrations. Second, metal
complexes have been used as inhibitors of the MCU to prevent
mCa2+ overload. Finally, the ability of metal complexes to cycle
through different oxidation states has made them effective
antioxidants that can catalytically decompose the harmful ROS
produced during IRI. Each of these three strategies is discussed
within this Perspective, highlighting the important role that the
field of metals in medicine plays in the management of IRI.

2. GASOTRANSMITTER DELIVERY
The three toxic gases CO, H2S, and NO have been recognized
to be endogenously produced gasotransmitters that play an
important role in regulating a variety of biological processes
and give rise to anti-inflammatory, antiapoptotic, and
antioxidant effects.22 The appropriate application of these
gasotransmitters can also protect against IRI.23 In this section,
an overview of the efficacy of these gasotransmitters as
cytoprotective agents against IRI is given, followed by a
highlight on specific recent examples of how metal complexes
have been leveraged for their delivery to manage this
pathological condition.
2.1. Carbon Monoxide (CO). CO is well-known for its

toxicity. Concentrations above 10,000 ppm are lethal due to
the ability of this gas to bind tightly to hemes, a property that
stops mitochondrial respiration via inhibition of cytochrome c
oxidase.24 At lower concentrations, however, CO is produced
endogenously and plays a vital role in cellular function and
regulation.25,26 The primary origin of endogenous CO is from
the enzyme heme oxygenase-1 (HO-1), which is responsible
for the catabolism of heme and is activated by a number of
different cellular processes. The CO that is produced by HO-1-
mediated heme decomposition provides a regulatory feedback
loop in response to different biological stimuli.27,28 The
physiological importance of CO was demonstrated in HO-1-
deficient mice, where the addition of this gasotransmitter
exogenously was able to overcome the pathological effects
associated with this defect.29,30

With the importance of endogenously produced CO
recognized, researchers have also studied the biological and
medicinal effects of exogenously administered CO. At low
concentrations, this gasotransmitter has demonstrated ther-
apeutic effects for a variety of pathophysiological conditions,
such as cardiovascular disease, sepsis, and cancer, as well as
beneficial properties for organ transplantation.31−33 Notably,
extensive in vitro and in vivo studies have shown that CO can
protect against IRI.34−42 These protective effects include the
mitigation of apoptosis by decreasing the production of ATP
and consequent lowering of mitochondrial ROS generation,
the suppression of dendritic cell maturation, and the inhibition
of toll-like receptor (TLR) activation by preventing endosomal

Figure 1. Intracellular biochemical events that contribute to IRI.
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and lysosomal fusion (Figure 2).28 However, challenges
associated with the direct administration of gaseous CO at
therapeutically beneficial levels indicate that alternative
approaches are needed for its controlled delivery to hypoxic
or ischemic tissue. As a means of accomplishing this goal, the
development of CO-releasing molecules (CORMs), which
comprise both organic and metal-containing complexes that
act as prodrugs for this gasotransmitter, is an active field of
biomedical research.43 Because CO is a highly effective ligand
for metal ions,44 a property that is reflected by the long history
of metal−carbonyl compounds dating back to the late 19th
century,45 coordination and organometallic complexes com-
prise a promising platform for the delivery of small,
therapeutically relevant concentrations of this gasostransmitter
for IRI.
Among the wide variety of metal−carbonyl complexes that

have been investigated as CORMs,46 CORM-246 (1, Chart 1),
and CORM-347 (2, Chart 1) are arguably the most thoroughly
studied with respect to their activities for the management of

IRI. Compound 1, a dinuclear, chlorido-bridged ruthenium
(Ru) compound, showed a protective effect in several models
of IRI by releasing CO into the extracellular milieu.48−55

Despite the promising therapeutic effects of this complex, its
low aqueous solubility and fast CO-release limited its use in
further studies. A more soluble CORM, 2, is also able to
reduce the effects of IRI.47,52,56−61 The primary limitation of 2
for this application, however, arises from its challenging
synthesis and solvent-dependent speciation.62 Furthermore,
recent studies suggest that some of the biological effects of this
compound arise from the Ru byproducts rather than CO.63−66

Based on these limitations, researchers have sought to develop
CORMs with different transition metals27,67 and metal-free
CORMs.68,69 The use of alternative metal CORMs, as
specifically applied for IRI, is described below.

2.1.1. Manganese CORMs. Manganese (Mn) complexes
with CO-releasing properties have been thoroughly inves-
tigated for biological applications over the past decade.27 For
many of these complexes, however, poor water solubility and
fast CO release have limited their biomedical applications. The
Mn(I) tetracarbonyl complex, CORM-401 (3, Chart 2),
contains a bidentate dithiocarbamate ligand with a terminal
carboxylic acid group that enhances water solubility while
releasing 3 equiv of CO.70 This compound exhibits protective
effects against IRI both in vitro within H9c2 cardiomyocytes71

and ex vivo within pig kidneys.72 In these studies, treatment of
the cells or tissue with 3 prior to subjection to IRI led to
improvement in cell viability and tissue integrity. Within the
pig kidney model, these protective effects were accompanied
by a significant increase in blood CO levels, suggesting that this
gasotransmitter is the active protecting agent.

Figure 2.Mechanism of protection of CO against IRI. DAMPs (damage-associated molecular patterns) are molecules released in damaged or dying
cells. Upon their release, these molecules trigger endosomal and lysosomal fusion and activate toll-like receptors (MHC2-TLR), which trigger a
damaging inflammatory response. CO prevents lysosomal and endosomal fusion and can therefore attenuate this inflammatory response. In
addition, CO decreases ATP production in the mitochondria, lowering the presence of ROS and slowing apoptosis. Reproduced with permission
from ref 28. Copyright 2022 Elsevier Inc.

Chart 1. Structures of CORM-2 (1) and CORM-3 (2) That
Have Shown Protective Effects against IRI46,47a

aThese compounds release CO via ligand substitution displacement
with solvent molecules.
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2.1.2. Rhenium CORMs. Although rhenium (Re) carbonyl
complexes have been thoroughly investigated for their
photochemical and catalytic properties, recent studies have
revealed their potential for biomedical applications.73,74 In
particular, this class of compounds has found use as
CORMs,75−78 with several of them being specifically
investigated as therapeutic agents for IRI. The Re(II) carbonyl
complexes of the general formula cis-[Re(CO)2Br2L2]n− (Chart
3) are promising examples of Re-based CORMs for IRI.79 The

CO-release kinetics of these complexes under physiological
conditions are comparable to those of the well-studied CORM-
3 (2). For these complexes, L was altered to be different
monodentate nitrogen-donor ligands to assess structure−
activity relationships. Based on CO-release profiles, cis-
[Re(CO)2Br4]2− (4 , Chart 3) and cis , trans-[Re-
(CO)2Br2(Im)2] (5, Chart 3), where Im = imidazole, were
identified to be the most promising complexes from this class.
Accordingly, when neonatal rat ventricular cardiomyocytes in
the presence or absence of these compounds were exposed to a
short period of hypoxia followed by a brief reoxygenation
period to model IRI, only 4 and 5 were able to increase cell
survival relative to the untreated control. Importantly, cellular
uptake studies revealed that these two compounds were not
taken up by cells, suggesting that the delivery of extracellular
CO is sufficient to elicit their cytoprotective effects. Based on
these studies, it is clear that these Re(II) dicarbonyl complexes
represent an important class of therapeutic agents for IRI.
Building upon the success of cis-[Re(CO)2Br4]2−, research-

ers sought to improve its biological properties by conjugating it
to cyanocobalamin (vitamin B12) and an N-nitrosoamine-
functionalized version of vitamin B12, adding to the growing
number of multimetallic Re carbonyl complexes that have been
investigated for biological applications.80,81 In comparison to 4,
which lacks the cyanocobalamin vector, compound 6 (Chart 4)
exhibited improved stability in aqueous solution and
demonstrated a more substantial cytoprotective effect within

neonatal rat cardiomyocytes in a model of IRI.82 To further
increase the functionality of this compound class, N-nitros-
amines were appended to the vitamin B12 carriers to afford
compounds 7−9 (Chart 4).
The presence of both the N-nitrosamine and Re carbonyl

enables these complexes to be used for the release of both NO
and CO, providing a dual-action basis for their therapeutic
activities against IRI.83 To assess the therapeutic efficacy of
these compounds, 3T3 mouse fibroblast cells were incubated
in the presence and absence of each complex and then exposed
to a short period of hypoxia followed by a brief reoxygenation
period. Cells that were treated with 7−9 demonstrated a 50%
reduction in cell death compared to untreated cells. Despite
these promising results, the cytoprotective effects of 7−9 were
not greater than those of 4, the N-nitrosamine functionalized
vitamin B12 alone, or 6, which contains vitamin B12 but lacks
the N-nitrosamine (Figure 3). Although these results indicate
that the dual NO and CO delivery strategy did not lead to
significant enhancement of activity, it did highlight the value of
vitamin B12 as a conjugate that can improve the biological
compatibility of CORMs.
2.2. Hydrogen Sulfide (H2S).Most commonly known as a

toxic gas with a rotten egg smell, H2S has recently emerged as
the third gasotransmitter, joining NO and CO in this
important biological regulatory role.84 Over the past two
decades, endogenous H2S and related polysulfides (H2Sn),
produced via different enzymatic processes,85 have been
implicated in a wide variety of biological processes,86 including
cancer progression,87 cellular metabolism,88 neurological
regulation,89,90 cell death pathways,91 and the regulation of

Chart 2. Structure of the Mn-Based CORM-401 (3) That
Shows Protective Effects against IRI70a

aThis compound releases CO by ligand substitution with water
molecules in solution.

Chart 3. Structures of Re(II) CORMs That Show Protective
Effects against IRI79a

aThe mechanism of CO-release of these complexes is still currently
unknown, but is postulated to be through ligand substitution in
physiological environments.

Chart 4. Heteronuclear Co and Re Complexes Designed to
Simultaneously Release CO and NO To Reduce Cell Death
in Models of IRI82,83a

aThe Re(II) component releases CO in a similar manner as
compounds 4 and 5, whereas NO arises from the macrocyclic N-
nitrosamines that can undergo protolytic denitrosation in water.
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cardiovascular function.92 Three H2S-generating enzymes,
cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE),
and 3-mercaptopyruvate sulfurtransferase (3MST), are the
primary producers of endogenous H2S and play a vital role in
the aforementioned processes.93 This importance has
generated interest in the exploration of exogenous H2S as a
therapeutic agent for pathological conditions such as stroke
and IRI.94−96

With respect to the role of H2S in myocardial IRI, the
endogenous production of H2S is vital to heart health.98

Consequently, the infarct size of isolated rat hearts is larger
when endogenous H2S production is inhibited, and the
introduction of exogenous H2S reverses this effect.99 In
addition, the overexpression of CSE in isolated rat hearts
reduces the effects of IRI, demonstrating that both endogenous
and exogenous H2S can protect tissues from IRI.100 H2S has
additionally shown an attenuation of injury in ischemic stroke,
demonstrating its efficacy in neurological systems.101−106

The cytoprotective properties of H2S in IRI are mediated by
several targets (Figure 4).97 The most well-documented
mechanism is based on its activity on mitochondrial KATP
channels. This activation stimulates K+ uptake in the
mitochondria, which attenuates the MMP after reperfusion
and diminishes the driving force for cytotoxic mCa2+ over-
load.107 Furthermore, H2S inhibits cytochrome c oxidase,108

which slows the production of ROS as reperfusion occurs and
mitochondrial oxidative phosphorylation is restored.109 A third
cytoprotective mechanism of H2S arises from its ability to
activate several important enzymes, like phosphatidylinositol-3-
kinase (PI-3-kinase), which are involved in upregulated cell
survival pathways and apoptosis prevention.110

Despite these beneficial effects, its toxicity at high
concentrations and challenges associated with administering
it as a gas have sparked significant research efforts to develop
small molecules that can deliver H2S to biological systems at
suitable concentrations for therapeutic use.95 The design and
implementation of stimuli-activated H2S donors has been
particularly fruitful, yielding compounds that are triggered by

external light,111−119 ROS,120,121 biological thiols,122−124

enzymatic activity,125,126 and pH.127 Notably, in contrast to
CORMs, which are mostly coordination and organometallic
complexes, H2S donors are predominately organic compounds.
The redox activity and acidity of H2S leads to challenges in
affording metal-based donors of this gas that have only recently
been addressed. Recent examples of metal-based H2S donors
and their applications in IRI are described below.

2.2.1. Light-Activated H2S Delivery. The organic compound
morpholin-4-ium 4-methoxyphenyl-(morpholino)phosphino-
dithioate (GYY4137, Chart 5) is a well-studied H2S
donor128,129 that releases this gasotransmitter via hydrolysis
over a time scale of several hours,130 enabling its use for the

Figure 3. Protective effect of compounds 6−9 in an in vitro model of
IRI. Blue traces represent cells treated with 30 μM of each compound,
whereas orange traces represent untreated cells. In this figure,
compound 6 is B12-ReCORM-2, compound 7 is 1b, compound 8 is
2b, and compound 9 is 3b. The designations for 1a, 2a, and 3a are the
vitamin B12 conjugates without the appended cis-[Re(CO)2Br4]2−.
Reproduced with permission from ref 83. Copyright 2016 Royal
Society of Chemistry.

Figure 4. Mechanisms of H2S cytoprotection during events of IRI.
Adapted with permission from ref 97. Copyright 2010 Elsevier, Inc.

Chart 5. Structures of the H2S Donor GYY4137 and the Red
Light-Activated Ru2+ H2S Donor (10)a

aGYY4137 releases H2S via hydrolyzes of the P−S bonds. Compound
10 undergoes a photosubstitution reaction to release GYY4137, which
subsequently hydrolyzes to produce H2S.

132
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treatment of IRI.131 The hydrolysis of and H2S release from
this compound occurs instantaneously upon dissolution in
water, limiting the conditions in which it can be applied
therapeutically. In an effort to control this H2S-release process,
it was coordinated to a photoactive Ru2+ polypyridyl complex
(10, Chart 5).132 When bound to the Ru2+ center, the
hydrolysis of GYY4137 is suppressed. Upon irradiation of 10
with red (631 nm) light, this H2S-donating ligand dissociates
from the Ru2+ coordination sphere, allowing it to undergo
hydrolysis and release H2S in solution. In an in vitro model of
IRI, H9c2 rat cardiomyoblast cells that were treated with 10
and irradiated with 631 nm light had substantially higher
viability compared to untreated cells and treated cells not
exposed to light (Figure 5), indicating that this light-activation

process operates in the cellular milieu as well. This complex, a
red light-activated H2S donor, highlights the value of using
metal complexes to leverage their photochemistry for this
application.
2.2.2. Reduction-Activated H2S Delivery. The hypoxic

nature of ischemic cells and tissues gives rise to a reducing
environment that could potentially be leveraged for the
activation of anti-IRI agents. In this context, the redox activity
of metal complexes can be used to design compounds that are
reduced under these conditions. This concept was investigated
recently for the selective delivery of H2S from a Ru
coordination compound. Upon chemical reduction of the
dinuclear persulfide-bridged (μ-S22−) Ru compound133 (11,
Chart 6), the S−S bond is cleaved, leading to the release of
H2S as a byproduct.

134 Importantly, it was demonstrated that
this process occurs in the presence of biologically relevant
reducing agents in aqueous solution, suggesting that this
compound could be used for the therapeutic delivery of this
gasotransmitter. To test this hypothesis, H9c2 rat cardiomyo-
blast cells were treated with 11 and then subjected to lethal
hypoxia-reoxygenation. Under these conditions, the viability of
the cells increased in the presence of higher concentrations of
the complex. Thus, the initial hypoxic conditions found during
IRI may be sufficient to activate this and related metal
complexes by chemical reduction.
2.3. Nitric Oxide (NO). The biochemistry of NO has been

studied extensively.135 In particular, its protective effects

against IRI have been widely reported, with both endogenously
produced136−143 and exogenously delivered139,144−146 NO
giving rise to these therapeutic properties. Although high
concentrations of NO are cytotoxic, small doses have anti-
inflammatory, antioxidant, and antiapoptotic effects.147 The
primary mechanism of protection of NO involves the
inhibition of tumor necrosis factor α (TNF-α), which is
responsible for the activation of transcription factor NF-κB.
This transcription factor triggers various events that lead to
downstream apoptotic and inflammatory events. By suppress-
ing TNF, these pathways are prevented, decreasing the
damaging effects of IRI. In addition, NO acts as a radical
scavenger and binds to cytochrome c oxidase, giving rise to its
antioxidant properties. Finally, NO binds to and activates
soluble guanylate cyclase (s-GC) in cells. This enzyme
produces cyclic guanosine monophosphate (c-GMP), a
messenger molecule that mitigates apoptosis through the
modulation of caspase production (Figure 6).148 In order to
use NO as a therapeutic agent, it needs to be delivered in
small, regulated quantities. To address this challenge,
researchers have developed nitric oxide-releasing molecules
(NORMs), which are capable of slow and sustained release of
NO. Given the long-standing history and well-known photo-
chemistry of metal nitrosyl complexes,149,150 this compound
class forms a promising basis for photoactivated NORMs for
biological use.151,152

The longest used therapeutic NORM is arguably sodium
nitroprusside, Na2[Fe(CN)5(NO)] (12, Chart 7). This iron
(Fe) compound has been extensively applied in different
models of IRI, demonstrating good efficacy in minimizing the
damaging effects of this condition.153−157 The release of NO
from this complex is triggered by chemical reduction by
biological reducing agents like cysteine and glutathione.158

Compound 12 has been used in human patients for this
condition as well.159 Cancer patients with chest pains
associated with myocardial ischemia were treated with a
cotton pad soaked in 1.5 M 12 on the abdomen. Elevated
levels of NO were detected in plasma taken from patients, and
patients exposed to 12 showed a significantly lower death rate
caused by acute myocardial infarction. These results suggest
that NO can help reduce damage associated with IRI and that
metal-based compounds are suitable delivery agents for this
gas.
Despite the frequent use of the Fe-based 12, researchers

have more extensively studied Ru-based NORMs to leverage
the greater inertness of this 4d transition metal. Although a
large number of these Ru NORMs have been studied, in
general, they have not yet been extensively applied to address
IRI.160 A notable example of one such NORM used for this

Figure 5. Protective effect of compound 10 ([Ru]) and GYY4137 in
cells subjected to an in vitro model of IRI. Reproduced with
permission from ref 132. Copyright 2018 American Chemical Society.

Chart 6. Structure of a Redox-Activated Persulfide-Bridged
Ru Complex (11)134a

aUpon chemical reduction, the S−S bond is cleaved, leading to a
terminal Ru−SH complex that releases H2S upon protonation in
water.
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purpose is the Ru nitrosyl complex cis-[Ru(bpy)2(SO3)(NO)]+
(13, Chart 7).161 The protective effects of this compound
against an in vivo model of cerebral IRI were investigated in
rats. Cessation of arterial blood flow to the brain via occlusion
of the carotid artery for 30 min, followed by a 60 min
reperfusion period, led to the formation of significant infarct
regions within the brain. In rats pretreated with this complex
via intraperitoneal (i.p.) injection, however, the size of the
infarct regions of 2,3,4-triphenyltetrazolium chloride (TTC)-
stained coronal brain sections were significantly smaller,
demonstrating the therapeutic viability of this compound
(Figure 7). Furthermore, elevated levels of nitrite, an in vivo
metabolite of NO, and decreased NF-κB expression in the
hippocampus were detected in the treated rats, implicating NO
to be the mediator of the observed biological effects.

3. PREVENTING MITOCHONDRIAL CALCIUM
OVERLOAD

As mentioned in the Introduction, mCa2+ overload is one of the
key intracellular processes that causes the harmful effects of
IRI. Thus, inhibition of mCa2+ uptake to prevent mCa2+

overload has been proposed and investigated as a therapeutic
strategy to prevent IRI. These efforts have focused on targeting
the MCU, a transmembrane protein complex that mediates
Ca2+ uptake into the mitochondria.162−166 The tetrameric
MCU complex167−170 comprises the MCU subunit and the
regulatory EMRE,171 MICU1,172 and MICU2173 subunits. The
EF-hand domains of the MICU1 and MICU2 subunits can
recognize and respond to high cytosolic Ca2+ concentrations,
dissociating from the pore-forming MCU subunit to allow for
mCa2+ uptake.

173−176 The MICU regulatory proteins interact
with a highly conserved solvent-exposed DXXE motif at the
pore of the MCU subunit (Figure 8).167,168 This motif
interacts directly with and mediates the uptake of Ca2+
ions.177,178 Although a number of organic compounds that
possess MCU-inhibitory activities have recently been identi-
fied,179−184 the earliest and most commonly used MCU
inhibitors are metal coordination complexes. These complexes,
as well as new discoveries in this area, are discussed below.
3.1. Multinuclear Ruthenium Complexes. The oxo-

bridged trinuclear Ru complex ruthenium red186,187 (14, Chart
8) was one of the first compounds discovered to inhibit mCa2+
uptake.188 Although it was originally used as a cytological
stain,189 its MCU-inhibitory activity led to its widespread
implementation in different biological studies,188,190−192 and it
was demonstrated to attenuate the downstream effects of IRI
in an ex vivo model.193 The use of 14 for these applications,
however, has been limited by its poor purity, which has led to
batch to batch variations in activity depending on the
supplier.194−196 An important observation from these studies
was that the mCa2+ uptake-inhibitory properties of 14 actually
decreased as the purity of the compound increased, implying
that another species was primarily responsible for this
property.197 Accordingly, the dinuclear oxo-bridged complex,
Ru360 (15, Chart 8), was identified as an impurity within 14
that possesses potent nM mCa2+ uptake inhibitory proper-

Figure 6. Mechanisms of protection against IRI by exogenous NO. NO lowers the production of free radicals by binding to cytochrome c oxidase.
It also inhibits TNF-α, which deactivates NF-κB, shutting down several mitogen-activated protein kinases such as p38, extracellular signal-regulated
kinases (ERK), and c-Jun N-terminal kinases (JNK). These kinases are linked to intensifying inflammation and apoptosis through the release of
caspases and the tumor protein p53. Finally, NO activates s-GC, leading to an enhanced production of c-GMP. Reproduced with permission from
ref 148. Copyright 2009 Taylor & Francis Group.

Chart 7. Structures of Sodium Nitroprusside (12) and cis-
[Ru(bpy)2(SO3)(NO)]+ (13), an NO-Releasing Molecule
with Demonstrated Neuroprotective Effect against IRI161a

aThese compounds release NO upon reaction with biological thiols.
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ties.198−200 Since this discovery, 15 has become the most
frequently used MCU inhibitor, employed primarily as a tool
to study mCa2+ dynamics and regulation. Although its
therapeutic potential for the prevention of IRI was
demonstrated,201,202 its more widespread applicability is
limited by its poor cell permeability and stability.203 The
axial formate ligands of 15 undergo a rapid aquation reaction
in buffered solutions, affording the diaqua-capped analogue

Ru360′ (16, Chart 8), which can be synthesized independ-
ently.204 The rapid aquation of 15 implies that 16 is the active
inhibitor.
Given the high potency of 15, analogues of this compound

with improved stability and cell permeability were sought. The
use of a bridging nitrido, rather than oxo, ligand afforded the
compounds Ru265 (17, Chart 9)185 and Ru265′ (18, Chart
9).205 These analogues retained the nM potency for MCU

Figure 7. (A) TTC-stained coronal brain sections treated with either saline solution (SS) or compound 13 (Rut-bpy). Sections A1 (SS-treated)
and A2 (13-treated) did not undergo IRI, while sections A3 (SS-treated) and A4 (13-treated) were exposed to an IRI model. (B) The calculated
damaged area (DA) to total area (TA) ratio of each TTC-stained brain section. Reproduced with permission from ref 161. Copyright 2011
Springer Science Business Media, LLC.

Figure 8. Topology of the MCU. Shown are the relevant regulatory proteins EMRE, MCUR1, MICU1, and MICU2 and the orientation of the
transmembrane domains (TM1 and TM2) of the MCU within the inner mitochondrial membrane (IMM). The insets depict (left) the N-terminal
domain of the MCU (MCU-NTD) and (right) the location of the DXXE motif in the MCU pore. Adapted with permission from ref 185.
Copyright 2019 American Chemical Society.
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inhibition observed for 15. Unlike 15, these compounds were
also able to inhibit the MCU in intact, non-permeabilized cells.
A series of studies were carried out to study the origin of the
enhanced cell permeability of 17 compared to 15. These
results suggest that this property is a consequence of the
greater redox stability of 17. Compound 15 is reduced by
common biological reductants like glutathione, affording
products with no MCU-inhibitory properties.205 By contrast,
17 remains intact in the presence of reducing agents. Thus, the
current working model is that extracellular reduction and
decomposition of 15 forms species that are not cell permeable
nor active MCU inhibitors. Importantly, like 15, 17 interacts
with the DXXE motif of the MCU, as evidenced by site-
directed mutagenesis studies163,178 and molecular docking,206

indicating that both compounds have the same molecular
target and mechanism of action.
Given the better cell permeability and enhanced stability of

17, it was demonstrated to be an effective protective agent in in
vitro hypoxia-reoxygenation assays within both rat ventricular
myocytes185 and primary cortical neurons.208 In addition to
preserving cell viability, 17 also showed no negative effects on
mitochondrial integrity.185 Furthermore, 17 was effective in
vivo, substantially reducing the brain infarct size within mice
that had been subjected to a model of ischemic stroke (Figure
9).208 In addition to 17, the ethylenediamine (en) (19, Chart
9) and 2,2′-bipyridine (bpy) (20, Chart 9) analogues of these
compounds were investigated. The en analogue 19 was a
substantially less effective MCU inhibitor than 17 with poorer
cell permeability,185 and 20 with bpy ligands was completely
inactive with respect to MCU inhibition.207 These results
indicate that the equatorial ammine ligands are important for
the MCU-inhibitory properties of this compound class.

3.2. Dinuclear Osmium Complexes. Building upon the
success of 17 as an MCU inhibitor, an analogue containing
osmium (Os), instead of Ru, was investigated. The Os
analogue, named Os245 (21, Chart 10), was also able to
inhibit the MCU in intact cells and was stable toward
biological reductants.209 This compound protected primary
cortical neurons exposed to oxygen-glucose deprivation, an in
vitro model for IRI, without causing any negative effects on
mitochondrial function. A significant difference between 17
and 21 arises within their axial ligand aquation kinetics. For 17,
the chlorido ligands are displaced by water under physiolog-
ically relevant conditions with a half-life of only 2.3 min,
whereas the half-life for this process for 21 is 700.1 min.
Accordingly, the diaqua analogue of 21, Os245′ (22, Chart
10), exhibits different MCU-inhibitory activity than its parent
compound. Compound 22 is equally potent as 17 and 18, and
100-fold more potent than 21. These results suggest that the
axial chlorido ligands, which remain bound to the Os centers
on 21 for a substantial length of time, act to diminish the
MCU-inhibitory activity of this compound class.205 Molecular
docking simulations support the higher potency of the diaqua
compounds, as these coordinated water ligands are engaged in
hydrogen-bonding interactions with acidic residues within the
MCU pore entry.206,209 Both of these nitrido-bridged Ru and
Os dinuclear complexes are among the most potent MCU
inhibitors reported to date, and their redox stability and cell
permeability make them excellent therapeutic candidates for
the prevention of IRI. Further functionalization of the axial
sites of this compound class has also shown promise for the
improvement of their delivery with added chemical function-
alities,210−212 suggesting that axial ligand modification is a
viable pathway for identifying new lead compounds.
The major limitation of this compound class is their

relatively low in vivo therapeutic window, which when
exceeded causes seizures in mice (Figure 9). The i.p. injection
of 17 in adult male mice caused seizures at doses of 10 mg kg−1

or higher 45 min after treatment.208 For 21, the onset of
seizures was observed at similar doses, but was delayed by
nearly 30 min.209 These side effects present challenges in the
use of these compounds as therapeutic agents for IRI.
Optimization of these compounds to increase their therapeutic
windows is an important objective in using MCU inhibition as
an approach for treating IRI.

4. ROS SCAVENGERS
Ischemic cells and tissue are ill-equipped to handle the surge of
oxygen that returns upon reperfusion. Consequently, ROS,
which include hydrogen peroxide (H2O2), hydroxyl radical
(HO•), and superoxide (O2

•−), are produced by the reduction
of dioxygen as undesired side products of the mitochondrial
respiratory chain,213 and contribute to the cell damage and
death that is characteristic of IRI.214 Although it has recently
been recognized that low levels of ROS play key roles in
cellular regulatory and signaling processes, high concentrations
of these species damage critical biomolecules and lead to cell
death.215 As such, cells have evolved sophisticated enzymes,
like catalases and SODs, that can decompose these ROS to
prevent cellular damage.216,217 Inspired by nature, researchers
have developed small molecules with similar catalytic proper-
ties and applied them as therapeutic agents to decompose ROS
and protect against IRI.218,219

SODs catalyze the dismutation of O2
•− into H2O2 and

O2,
220,221 whereas catalase facilitates the decomposition of

Chart 8. Structures of Previously Reported Multinuclear
Oxo-Bridged Ru MCU Inhibitors186,189,198−200,204

Chart 9. Structures of the Dinuclear Nitrido-Bridged Ru
MCU Inhibitors185,205,207
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H2O2 into O2 and H2O (Figure 10).222 Mammals express three
types of SOD: manganese SOD (MnSOD), found primarily in
the mitochondria, copper/zinc SOD (CuZnSOD), the major
SOD in cells found within the nucleus and cytosol, and
extracellular SOD (ECSOD), which has similar dinuclear Cu/
Zn active sites as CuZnSOD.223,224 Catalases in mammals are
classified into three groups: monofunctional heme-containing
catalases, heme-containing catalase peroxidases, and Mn-
containing catalases.225 The therapeutic potential of systems
that can catalytically decompose ROS is evident in various
studies that explored the effects of different expression profiles
of SOD and catalase within animals. For example, over-
expression of MnSOD within the hearts of transgenic mice
rendered them substantially less susceptible to the damaging

effects of myocardial IRI.226 With respect to catalase, its
deficiency has been linked to a wide variety of diseases and
disorders, including neurological disorders, cancer, and certain
metabolic disorders.222 Accordingly, the overexpression of
catalase confers protective effects against IRI in vivo.227 These
studies suggest that the use of small-molecule SOD and

Figure 9. In vivo effects within mice treated with Ru265 (17). (a, b) Durations of seizures detected over 90 min after i.p. injection of 17 at varying
concentration. (c) Representative TTC-stained brain sections after subjection to 24 h of hypoxic injury. (d, e) Neuroscores and infarct volumes in
mice injected with saline or 3 mg kg−1 17 after 24 h of IRI. Reproduced with permission from ref 208. Copyright 2020 Sage Publications.

Chart 10. Structures of the Dinuclear Nitrido-Bridged Os
MCU Inhibitors209

Figure 10. Mechanism of ROS dismutation by the enzymes SOD and
catalase (CAT).
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catalase mimics may be a therapeutically viable strategy for the
management of IRI.
To design suitable small-molecule analogues, consideration

of the metal-containing active sites of these enzymes is needed.
With respect to SOD mimics, most efforts have focused on
modeling MnSOD rather than CuZnSOD, due to the fact that
the former provides a simpler mononuclear active site. The
active site of human MnSOD (Figure 11a) comprises a Mn
center in a trigonal bipyramidal geometry coordinated by three
histidine and one aspartate residues, as well as a labile water
molecule.228,229 Human catalases are tetrameric proteins with a
heme-Fe active site (Figure 11b). Unsurprisingly, the Fe center
attains a five-coordinate, square pyramidal geometry, sup-
ported by the porphyrin donor atoms and an axial labile site
occupied by water in the resting state.230 As described below,
small-molecule mimics of these enzymes have adopted similar
primary coordination sphere features of their active sites.
4.1. Mn(III) Porphyrins. A very common class of small-

molecule SOD/catalase mimics are Mn(III) porphyrin
complexes. The Mn(III) porphyrin, AEOL 10150 (23, Chart
11), was investigated in various clinical trials for its application
as a catalytic antioxidant, displaying both SOD and catalase
activities.231−235 Compound 23 was protective in an in vitro
model of neuronal oxygen-glucose deprivation and was also
able to decrease the brain infarct size in mice subjected to an
ischemic stroke model.236 Other Mn(III) porphyrins (24−25,
Chart 11) were found to attenuate the infarct size of ischemic
brain tissue of rats.237 These protective effects correlated with
decreased ROS levels in the brain, indicating that their catalase
and SOD activities are responsible for ameliorating the effects
of IRI. Notably, the administration of these complexes both
before and after the reperfusion gave rise to protective effects,
suggesting that depletion of ROS can be therapeutic even after
the IRI event.
Modifying the substituents of the porphyrin provides a

versatile means of altering and improving the catalytic activities
and therapeutic potentials of their Mn(III) complexes. Adding
N-hexylpyridinium substituents onto the porphyrin (26, Chart
11) led to the discovery of a MnSOD mimic that has a rate of
O2

•− dismutation on the same scale as native SOD enzymes.240

This dramatic increase in rate compared to compounds 24 and
25 suggested that this complex afforded significant promise for

IRI. Researchers thus investigated the ability of this complex to
attenuate the effects of IRI ex vivo with primary renal tissue238

and in vivo, examining the effects of IRI on the spinal cord,
with adult female rats.239 In the ex vivo model, a dose of 50 μg
kg−1 of 26 for 30 min followed by a 40 min ischemic period
and an 18 h reperfusion period showed minimal protection in
renal tissue, but treatment with 26 for 24 h showed significant
reduction in tissue damage (Figure 12).238 Longer pretreat-
ment periods of 26 afforded a greater attenuation of damage in
the in vivo spinal cord model, indicating that the presence of
this compound during the IRI event was vital. The measure-
ment of ROS within the relevant tissues of the treated animals
revealed them to be lower than those within untreated animals,

Figure 11. A. Active site of human MnSOD (PDB 1N0J, ref 227). Adapted with permission from ref 229. Copyright 2010 Elsevier Inc. B. Active
site of human catalase (PDB 1DGF, ref 229). Adapted with permission from ref 230. Copyright 2000 Elsevier Inc.

Chart 11. Structures of SOD/Catalase Mimics That Showed
Attenuation of Neuronal IRI236−239
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supporting that the therapeutic activity of 26 is mediated by its
antioxidant properties.
4.2. Salen and Macrocyclic Complexes. The well-

known tetradentate Schiff base salen ligands afford metal
complexes with SOD and catalase activities.241,242 Two such
Mn(III) salen complexes, EUK-8 (27, Chart 12) and EUK-134

(28, Chart 12), possess exceptional SOD and catalase
activities243,244 that have been leveraged for a variety of
biological applications.245−247 Notably, these compounds have
been applied for the management of IRI in various models and
conditions.248−253 Compound 27 was found to preserve
normal cardiac and mitochondrial function in rats subjected
to IRI.249 Compound 28 was able to decrease the brain infarct
size in rats subjected to an ischemic stroke more effectively
than compound 27, indicating that the methoxy groups
improved the therapeutic potential, presumably due to the
higher catalase activity of 28 compared to 27.250

A series of pentaazamacrocyclic complexes of Mn(II) are
also effective SOD mimics.254,255 Most notably, the compound
M40403 (29, Chart 13)256,257 has progressed to clinical trials
for the treatment of various pathological conditions related to
elevated levels of ROS.258−261 This complex has specifically
demonstrated protective effects against models of IRI.
Treatment of rats exposed to ischemia and sequential
reperfusion periods with compound 29 led to smaller
myocardial infarct sizes at concentrations of 1 mg kg−1 or
higher.262 In addition, the compound SC-52608 (30, Chart

13)263 has shown a significant protective effect against IRI in
both isolated rabbit hearts264 and an in vivo model of
myocardial IRI within dogs.265 In both models, the myocardial
infarct sizes were significantly smaller within those treated with
30 compared to the control.
A general limitation of many SOD mimics arises from their

production of H2O2. If their catalase activity is not sufficiently
fast to further decompose H2O2, this ROS can undergo redox
chemistry with intracellular Fe, which catalyzes the Fenton
reaction and produces highly toxic HO•.266,267 Avoiding the
production of HO• can be achieved by a more rapid succession
of catalase activity, a feature that is lacking in some of the prior
Mn complexes discussed, limiting their therapeutic poten-
tials.268 A recent study described a trinuclear Mn(III) salen
complex, supported by a cryptand-like ligand (31, Chart
14).269 This complex showed catalase activity and was able to
decrease H2O2 levels in vitro without producing HO•. Based
on these promising results, this complex was evaluated in an in
vivo ischemic stroke model. In rats treated with 31 via
intracerebroventricular injection, the size of the brain infarct, as
measured by post-mortem TTC staining and in vivo 18F-
fludeoxygluclose ([18F]FDG) positron emission tomography
(PET), was significantly smaller than that in untreated rats
(Figure 13). Additionally, the large magnetic moment of the
trinuclear compound 31 enabled its use as a MRI contrast
agent. Compound 31 could be directly detected via MRI and
was shown to be present throughout the brain with this

Figure 12. Renal tissue that has been stained with periodic acid-Schiff (PAS) and an anti-nitrotyrosine antibody after IRI (I/R) with and without
pretreatment of 26 (MnP). Sham = No IRI. PAS staining demonstrates the presence of polysaccharides in tissue and was used to examine
histopathological changes. The anti-nitrotyrosine antibody staining detects nitrotyrosine, a metabolite of tyrosine that arises from oxidative
nitration (dark staining surrounding damaged white space within tissue). In both cases, the even distribution of the PAS stain is characteristic of
undamaged tissue, whereas white regions indicate significant morphological damage. Furthermore, the lower intensity of the nitrotyrosine staining
within the treated mice indicate less oxidative nitration occurred. Reproduced with permission from ref 238. Copyright 2007 Elsevier Inc.

Chart 12. Structures of EUK-8 (27) and EUK-134 (28),
Salen Mn(III) Complexes That Can Attenuate the Effects of
IRI249,250

Chart 13. Structures of M40403 (29) and SC-52608 (30),
Macrocyclic Mn(II) Mimics of SOD/Catalase That Protect
against IRI256,257,263
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imaging technique. The dual antioxidant and imaging proper-
ties of 31 could render it valuable as a theranostic agents and
further highlights the value of Mn complexes as MRI contrast
agents.270,271

5. CONCLUSIONS
In this Perspective, we examined the potential of metal
coordination complexes as therapeutic agents for IRI. Given
the current lack of clinically approved preventative measures

for this condition, bioinorganic chemists can play an important
role in this area by targeting the well-defined therapeutic
strategies discussed in this manuscript. An important
commonality between these three therapeutic approaches is
that metal coordination complexes have unique properties that
make them amenable for these applications. The release of
CO, H2S, and NO from metal coordination complexes is a well
validated strategy to deliver these compounds in biological
settings because of the strong ligating properties of these
gasotransmitters. Furthermore, stopping mCa2+ overload,
another therapeutic approach for the prevention of IRI, is
accomplished by blocking the MCU. In this context, the best
inhibitors for the MCU are multimetallic Ru and Os
complexes, and these have been demonstrated to successfully
prevent cell death caused by IRI. Various other MCU
inhibitors have been developed,272 but few of these have
been tested in models of IRI. Examining these complexes and
others not yet reported can continue to expand this area.
Finally, ROS scavengers have shown significant promise as
therapeutic agents against IRI. In this case, metal complexes
are uniquely suited for this application based on their ability to
reversibly cycle through different oxidation states to catalyti-
cally decompose ROS.
The complexes all described within this Perspective exhibit

protective effects against different models of IRI. The majority
of these drug candidates have only been tested in vitro, with
several key examples of compounds that have been evaluated
in vivo and even in humans. Obviously, complexes in these
latter categories have substantially more promise for further
clinical advancement. Compound 12 has been used clinically
for the management of blood pressure273−276 and has recently

Chart 14. Structure of a Salen-Based, tri-Mn
Metallocryptand (31) with Protective Effects against
Ischemic Stroke269

Figure 13. (a) Schematic of the operation and procedure of ischemic stroke and intracerebroventricular injection. (b) Biodistribution of compound
31 (shown as 1 in the figure) by MRI after surgery. (c) PET images of rat brain following tail vein injection of [18F]FDG after treatment with 31.
(d) Coronal brain sections of rats stained with TTC in the absence of IRI, with IRI, no treatment (DMSO), and treatment of compound 31 (1)
and a mononuclear Mn-salen compound (1c). (e) Calculated brain infarct volumes under conditions described in (d). Reproduced with permission
from ref 269. Copyright 2020 American Chemical Society.
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been explored clinically for the treatment of IRI.159 This study,
although demonstrating promise for the treatment of IRI, did
not show a consistent outcome in patients, indicating that
further clinical studies need to be performed. The MnSOD
mimics 23231−235 and 29258−261 have been investigated in
clinical trials for a wide range of conditions, but have not yet
been tested clinically for IRI. The strategy of MCU inhibition
is the only approach presented in this manuscript that has not
yet been applied in humans. The lack of work in this area may
arise as a consequence of the fact that the MCU was only
conclusively identified in 2011,163,164 and as such it represents
a relatively new drug target. In addition, as noted in Section 3,
a major hurdle for the metal-based MCU inhibitors that must
be overcome before human trials can be considered arises from
their dose-limiting seizure-inducing activities within mouse
models. Because ongoing studies suggest that this property
arises from off-target effects,277 efforts are required to improve
their selectivity for the MCU in order to minimize their
abilities to induce seizures. Therefore, like any drug candidate,
improving the therapeutic window is an important objective
for their advancement to clinical trials. In any case, this
Perspective has shown that the groundwork for preventative
strategies against IRI has been laid, and metal complexes have
an important role in the management of this condition moving
forward.
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